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Abstract 

As pointed out by French & Wilson [Acta Cryst. 
(1978), A34, 517-525], central-limit theorems exist for 
the sums of non-independent as well as of independent 
variables [Bernstein (1922). Math. Ann. 85, 237-241; 
(1927). Math. Ann. 97, 1-59]. The finite size and 
stereochemical properties of atoms make the terms 
summed in the calculation of structure factors non- 
independent, but, if a central-limit theorem is appli- 
cable, then French & Wilson's postulate that the 
distribution parameter is ( I )  and not X has a 
theoretical base as well as empirical justification. The 
curve of ( I )  versus (2 sin 0)/2 is correlated with the 
Patterson function, and the question of the existence of 
series expansions of the Gram-Charlier or Edgeworth 
type for sums of non-independent variables is raised. 

Central-limit theorems 

The expression for the structure factor in terms of the 
atomic positions and the indices of reflexion, 

Fhkt= ~ f jexp{2ni(hxj+ kyj+ lzj)}, (1) 
j=l 

is of the form 

S , =  u 1 + u 2 + ... + Un (2) 

considered in statistics in connexion with central-limit 
theorems. The usual theorem (see, for example, 
Cram+r, 1945, pp. 213-220) depends on the 
assumption that the u's are independent variables, and 
Wilson (1949) used it to deduce the probability 
distribution of the structure factors and of the inten- 
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sities of reflexion for crystals having the space groups 
P1 and ~ P i ,  though he realized that the finite size of 
atoms would prevent complete independence of the 
successive terms of (1). The assumption of complete 
independence implies that the mean intensity of 
reflexion is 

n 
X =  Z Ill 12 (3) 

/=L 

(Wilson, 1942). The expressions derived by Wilson 
have been found to apply with useful accuracy to many 
structures, but for large-molecule structures the av- 
erage intensity does not decrease monotonely with 
(2 sin 0)/2, as predicted by (3), but shows more or less 
marked oscillations. French & Wilson (1978), drawing 
attention to generalized central-limit theorems applic- 
able when the u's of (2) are not independent, postu- 
lated that the functional forms of the Wilson (1949) 
distributions would remain valid, but that the distri- 
bution parameter [S in the notation of Wilson (1950)] 
would be ( I ) ,  the actual local value of the mean 
intensity, averaged over values of hkl giving approxi- 
mately the same value of (2 sin 0)/2, instead of the sum 
given in (3). [In reading their paper it must be noted 
that they use the symbol X both for this sum and for 
the mean intensity ( I ) . ]  Rogers (1965, 1980), Ladd 
(1978) and others have tacitly made the same 
assumption, without explicit reference to central-limit 
theory. 

There are two main generalizations of the central- 
limit theorem for non-independent variables. The first 
applies when the u's are 'almost independent' (presque 
inddpendantes; Bernstein, 1922), where 'almost in- 
dependent' is given a precise mathematical definition 
whose physical meaning is not easy to grasp. The 
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second applies when each uj is related only to a finite 
number , f  (n), of its neighbours (Bernstein, 1927), when 
the u's are said to be f ( n )  dependent. The second is 
perhaps the case that has been considered most 
frequently in later work, and particularly forf(n) equal 
to a constant, m, when the u's are said to be m 
dependent. This second case seems plausible for 
crystallographic applications, since the positions of 
atoms close together in the structure are closely 
correlated by interatomic forces, whereas those far 
apart will show little correlation if there is any flexibility 
in the asymmetric unit when unconstrained. Long- 
range stereochemical effects, as in pseudo-graphitic 
aromatic hydrocarbons, would presumably produce 
long-range correlation. Harker's (1953) idea of 'globs' 
seems equivalent tof(n)  dependence. 

French & Wilson (1978)justified their postulate for 
the value of the distribution parameter on empirical 
grounds (their Fig. 3), but it is readily seen to be 
theoretically correct if two conditions are satisfied: 

(i) that one of the generalized central-limit theorems 
is applicable, giving_ asymptotic normality of the 
distribution of F in P1 under certain conditions, or of 
its real and imaginary parts separately in P1; and 

(ii) that the expected value of u j, 

(uj) =---f/(exp {2ni(hxj + kyj + lzj)}), (4) 

is equal to zero. 
The distribution parameter in a normal distribution 

is the variance of the variable, and in the present case, 
for PI ,  

var ( F ) =  ( F  z) -- ( F )  z. (5) 

The first term is the mean value of the intensity of 
reflexion, and the second term is zero if the second 
condition is fulfilled. Wilson (1949) considered this 
condition at some length, and concluded that it would 
be fulfilled for all but the lowest-order reflexions; there 
is no obvious reason why it should fail when the u ' s  are 
non-independent. The French & Wilson postulate is 
thus justified theoretically as well as experimentally for 
P[.  A somewhat longer calculation verifies it for P1 
also. It may be remarked that practically all experi- 
mental investigations based on the intensity distri- 
bution functions, from Howells, Phillips & Rogers 
(1950) onwards, have used the empirically determined 
value of ( I ) ,  rather than the theoretical value of 27 
given by (3), as the distribution parameter, and are thus 
consistent with the generalized central-limit theorem 
and the French & Wilson postulate. Obvious al- 
lowances have to be made if a significant part of the 
scattering is due to atoms in parameter-free positions, 
such as a heavy atom at the origin, or in positions that 
are effectively parameter-free, such as atoms in the 
Wyckoff positions (a), (b), (c), (d) of the space group 
P121 for the hOl reflexions. Main (1975) and others 
have devised methods for making use of known 

molecular fragments in improving the determination of 
absolute scale (Wilson, 1942). 

Patterson interpretation of  ( I )  

It is instructive to consider the difference between ( I )  
and L" from the point of view of the Patterson (1935) 
function. The intensity of reflexion is 

I =  Z f / f ~  exp { 2 z 6 [ h ( x j -  
J,k 

X k) + k(yj -- Yk) 

+ l(z 1 -  Zk)]} (6) 

where 

and 

= Z' + Z f / f ~  exp {2hi s .(r j--  rk)}, (7) 
J~k 

r = x a  + yb + ze (8) 

s = h a *  + kb* + le*. (9) 

The intensity can thus be regarded as the structure 
factor of the Patterson (1935) representation of the 
actual structure, in which representation there are 
pseudo-atoms of atomic scattering factor f J ~  at 
positions given by the interatomic vectors 

rjk~ r j -  r k (10) 

(cf. Wilson, 1970, pp. 177-179; 1978, § 3.1). Alter- 
natively, (7) may be regarded as expressing the 
intensity as the sum of the ideal average intensity 27 and 
terms which have the expected value zero for sufficient- 
ly large Is I, but which may be appreciable for s in the 
observable range (cf. Rogers, 1965). Dispersion, 
implicit in the use of the complex conjugate offk in the 
expressions above, complicates the intensity distri- 
butions even when the contributions of separate atoms 
are assumed to be statistically independent (Wilson, 
1980), and will be neglected. Its effect is probably small 
in most X-ray experiments, but might be more 
important for electron and neutron diffraction. 

The fundamental correlation between atomic 
positions results from the finite radii of atoms, so that 
there is a minimum value of I rjkl. Interatomic dis- 
tances are not only finite, but reasonably constant 
within a class of substances. For example, in aliphatic 
organic compounds the inter-carbon distance does not 
vary greatly from 1.54 A, and in aromatic compounds 
it does not vary greatly from 1.39 A. The Patterson 
representation will thus have a pseudo-atom of atomic 
scattering factor Z at the origin, surrounded by an 
approximately spherical inaccessible volume of radius 
about t rjkl rain" For crystals of the classes just mentioned 
there will be a pile-up of about 2n pseudo-atoms at 
about this radius. Beyond that, in flexible structures, 
there may be less-definite pile-ups corresponding to 
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next-nearest neighbours, and in non-flexible structures 
definite pile-ups may exist for a long sequence of values 
of I rl. In proteins there will be pile-ups corresponding 
to the repeat distances along the backbone of the helix 
[or 'warped zipper' in DNA? (Stokes, 1980)]. One sees 
readily that each favoured value of rjk -- I rjkl will lead 
to a term proportional to the spherically averaged value 

f i f k  2~r r~ 
(ujk)=---~ f f exp{2rcisrjkcosO}sin 0d0d~0 (11) 

0 0 
sin 2~rjk 

= f j f k  (12) 
2zrsrjk 

tic approximation, or of no practical use, depends on 
the properties of the distribution. Applications of such 
series to intensity statistics up to about 1975 have 
been reviewed by Srinivasan & Parthasarathy (1976), 
and more recent applications have been made by 
Shmueli (1979) and Shmueli & Wilson (1981). Pre- 
sumably analogous expansions should exist for the sum 
of non-independent random variables, but so far I have 
not found any useful references. One might guess that 
factors (ii) and (iii) above would not be altered, but 
that in (i) the functions of the moments would undergo 
changes analogous to the substitution of-~I) for 27 as 
the distribution parameter. 

summed over all values of j and k giving (about) the 
same value of rjk. This is, of course, the familiar Debye 
expression, and produces a hump in the ( I )  versus s 
curve at about s = 5/4r. Nearest-neighbour distances 
with r about 1.5 A thus correspond to values of s far 
off scale to the right of French & Wilson's (1978) Fig. 
2, and the hump observed by them for a phosphoryl- 
ase corresponds to a much larger frequent distance. 

The excluded volume of radius of about one atomic 
diameter around the origin of the Patterson represen- 
tation is closely analogous to the inaccessible volumes 
caused by certain symmetry elements (Wilson, 1964; 
Nigam, 1972; Nigam & Wilson, 1980). It corresponds, 
in fact, to the inaccessible volume round a centre of 
symmetry, and would modulate the average intensity, 
as a function of s, by the addition of a spherical Bessel 
function if the other interatomic vectors were randomly 
distributed over the accessible regions of Patterson 
space. Non-random distribution, as is observed in 
practice for proteins and other large molecules, will 
produce a further modulation, and it does not seem 
practicable to make any general prediction at this stage. 

Is there a series expansion for a finite sum? 

When the sum of a number of independent random 
variables tends to an ideal distribution as the number of 
variables increases, then under fairly general conditions 
the distribution function for a finite number can be 
expressed as the sum of the ideal distribution and some 
correction terms, each correction term being the 
product of three factors: 

(i) a function of the moments of the distribution; 
(ii) one of a set of orthogonal polynomials; and 
(iii) the ideal distribution. 

The derivation is given in many statistical texts, for 
example by Cram6r (1945, pp. 221-231). Whether the 
series is genuinely convergent, or useful as an asympto- 
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